
A lot of services will be installed using docker containers for ease of use. This way services can be
swapped, upgraded or changed almost at will while still being able to store persistent data easily.
Performing backups will be also made easy, since the containers themselves don't need to be
backed up.

Docker services are usually run by one of two ways. Either by using the docker run command or by
using docker compose . While both ways have their pros and cons, using docker compose is often
much more comfortable.

docker compose takes a file called docker-compose.yml and runs the services that are configured in
it. The file can include one or more services (often forming an app-stack), that can each be
configured together with additional settings like volumes or networks. It is possible to put every
single service you want to use inside a single docker-compose.yml file or alternatively create
seperate files for seperate app-stacks.

The following shows a small docker-compose.yml file for an example app.

Container setup

Overview

Docker compose

services:

 app1:

 image: app1

 ports:

 - "8080:80"

 volumes:

 - ./config:/config

 - /path/to/persistentdata/app1:/var/log

 environment:

 - hostname=${HOSTNAME}

 depends_on:

 - redis

 redis:

The compose file specifies two services: app1 and redis . We can see some different things like
persistent storage via docker volumes, environment variables with .env or port mappings.

With - "8080:80" the port 80 inside the container will be mapped to the port 8080 outside the
container. If for example the app starts a webserver that internally runs on port 80, then it can be
accessed over port 8080 outside the container.

For a more detailed overview see the docker compose documentation.

Some settings can be stored outside of the docker-compose.yml file and insted inside the .env file.
This way, repeating settings like a database username or specific port can be specified at a single
point, making later changes much easier.

An example .env file can look like this:

In the docker-compose.yml file, these variables can be accessed by simply writing ${DB_USER} . When
starting the container, the variable gets substituted by the entry in the .env file.

More information can be found in the docker documentation.

For persistant storage of data (e.g. documents, pictures, videos, etc.) we can use docker volumes.
A volume can be used like this:

Here, the config folder, which sits right beside the docker-compose.yml folder outside the container,
will be mapped to the conf folder inside the container. This lets the container read and write (usual
permissions apply) to the folder, making it possible to persistently store data. When the container
gets destroyed, all data in the config folder will be left untouched. The volumes will be created by

 image: redis

.env

DB_USER=dbusername

DB_PASS=secretpassword

APP_PORT=9876

Persistent Storage

services:

 app1:

 volumes:

 - ./config:/conf

https://docs.docker.com/compose/features-uses/
https://docs.docker.com/compose/environment-variables/env-file/
https://docs.docker.com/compose/compose-file/07-volumes/

docker if they do not exist when starting up the container.

By default, if no additional configuration is specified, docker automatically creates a single default
docker network for all services in the compose file. For better configuration possibilities we can
specify a different docker network for the services to use. We can also set some things like the
type of network, the subnet used by the network or if IPv6 should be supported.

To specify a different network we can for example write the following:

This creates a new network called bookstack that uses the default bridge network driver. By using
default , every container, unless set otherwise, will be put into the newly created network.

By creating a network by ourselves we can make it possible for other services, that may be created
somewhere else, to join the network

https://docs.docker.com/compose/features-uses/
https://docs.docker.com/compose/environment-variables/env-file/
https://docs.docker.com/compose/compose-file/07-volumes/

Docker Networks

networks:

 default:

 name: bookstack

 driver: bridge

See also

Revision #3
Created 10 September 2023 17:12:16 by Levin
Updated 10 September 2023 17:44:50 by Levin

https://docs.docker.com/compose/features-uses/
https://docs.docker.com/compose/environment-variables/env-file/
https://docs.docker.com/compose/compose-file/07-volumes/

