
A summary of different useful things not specific to my homeserver setup

Docker

Installation
Container setup
Tips & Tricks

General Knowledge

Docker

Docker

The following steps are for installing Docker Engine on a Debian system. The instructions are taken
from the official documentation.

1. Set up Docker's Apt repository.

Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl gnupg
sudo install -m 0755 -d /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/debian/gpg | sudo gpg --dearmor -o
/etc/apt/keyrings/docker.gpg
sudo chmod a+r /etc/apt/keyrings/docker.gpg

Add the repository to Apt sources:
echo \
 "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg]
https://download.docker.com/linux/debian \
 "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \
 sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update

2. Install the Docker packages.

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

3. Test if docker is working by running

sudo docker run hello-world

Installation

Install using apt

Post-Installation steps

https://docs.docker.com/engine/install/debian/

Make it possible for docker to be run without sudo.

1. Create the docker group (if necessary).

sudo groupadd docker

2. Add your user to the docker group.

sudo usermod -aG docker $USER

3. Log out and log back in. If you are running in a VM you might need to restart the VM.
4. Verify that docker can be run without sudo .

docker run hello-world

https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/linux-postinstall/

See also

https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/linux-postinstall/

Docker

A lot of services will be installed using docker containers for ease of use. This way services can be
swapped, upgraded or changed almost at will while still being able to store persistent data easily.
Performing backups will be also made easy, since the containers themselves don't need to be
backed up.

Docker services are usually run by one of two ways. Either by using the docker run command or by
using docker compose . While both ways have their pros and cons, using docker compose is often
much more comfortable.

docker compose takes a file called docker-compose.yml and runs the services that are configured in it.
The file can include one or more services (often forming an app-stack), that can each be configured
together with additional settings like volumes or networks. It is possible to put every single service
you want to use inside a single docker-compose.yml file or alternatively create seperate files for
seperate app-stacks.

The following shows a small docker-compose.yml file for an example app.

Container setup
Overview

Docker compose

services:
 app1:
 image: app1
 ports:
 - "8080:80"
 volumes:
 - ./config:/config
 - /path/to/persistentdata/app1:/var/log
 environment:
 - hostname=${HOSTNAME}
 depends_on:
 - redis

The compose file specifies two services: app1 and redis . We can see some different things like
persistent storage via docker volumes, environment variables with .env or port mappings.

With - "8080:80" the port 80 inside the container will be mapped to the port 8080 outside the
container. If for example the app starts a webserver that internally runs on port 80, then it can be
accessed over port 8080 outside the container.

For a more detailed overview see the docker compose documentation.

Some settings can be stored outside of the docker-compose.yml file and insted inside the .env file.
This way, repeating settings like a database username or specific port can be specified at a single
point, making later changes much easier.

An example .env file can look like this:

In the docker-compose.yml file, these variables can be accessed by simply writing ${DB_USER} . When
starting the container, the variable gets substituted by the entry in the .env file.

More information can be found in the docker documentation.

For persistant storage of data (e.g. documents, pictures, videos, etc.) we can use docker volumes.
A volume can be used like this:

Here, the config folder, which sits right beside the docker-compose.yml folder outside the container,
will be mapped to the conf folder inside the container. This lets the container read and write (usual

 redis:
 image: redis

.env

DB_USER=dbusername
DB_PASS=secretpassword
APP_PORT=9876

Persistent Storage

services:
 app1:
 volumes:
 - ./config:/conf

https://docs.docker.com/compose/features-uses/
https://docs.docker.com/compose/environment-variables/env-file/
https://docs.docker.com/compose/compose-file/07-volumes/

permissions apply) to the folder, making it possible to persistently store data. When the container
gets destroyed, all data in the config folder will be left untouched. The volumes will be created by
docker if they do not exist when starting up the container.

By default, if no additional configuration is specified, docker automatically creates a single default
docker network for all services in the compose file. For better configuration possibilities we can
specify a different docker network for the services to use. We can also set some things like the
type of network, the subnet used by the network or if IPv6 should be supported.

To specify a different network we can for example write the following:

This creates a new network called bookstack that uses the default bridge network driver. By using
default , every container, unless set otherwise, will be put into the newly created network.

By creating a network by ourselves we can make it possible for other services, that may be created
somewhere else, to join the network

https://docs.docker.com/compose/features-uses/
https://docs.docker.com/compose/environment-variables/env-file/
https://docs.docker.com/compose/compose-file/07-volumes/

Docker Networks

networks:
 default:
 name: bookstack
 driver: bridge

See also

https://docs.docker.com/compose/features-uses/
https://docs.docker.com/compose/environment-variables/env-file/
https://docs.docker.com/compose/compose-file/07-volumes/

Docker

When working with a larger app-stack, that uses multiple different services, a lot of times different
settings get reused. To simplify we can use yaml anchors and aliases.

Imagine we have the following servies:

We can see, that the restart policy and the networks are repeated for every single service. We
could simplify like this:

Tips & Tricks
Simplify docker compose files

version: "3.4"
services:
 app1:
 image: app1
 networks:
 - net1
 - net2
 restart: unless-stopped
 app2:
 image: app3
 networks:
 - net1
 - net2
 restart: unless-stopped
 app3:
 image: app3
 networks:
 - net1
 - net2
 restart: unless-stopped

version: "3.4"
x-app_default: &app_default

Starting from compose version 3.4 docker ignores top-level keys that start with x- . In the example
above, wherever we write <<: *app_default , everything given after x-app_default: &app_default gets
inserted.

If a key-value pair is specified in app_default and also in one of the services, the app_default values
get overwritten entirely.

For more information see here.

The following are examples for aliases, that can be used to start or stop apps.

To use these, simply add them to your ~/.bashrc and log out and back in or alternatively use source
~/.bashrc .

https://medium.com/@kinghuang/docker-compose-anchors-aliases-extensions-
a1e4105d70bd

 networks:
 - net1
 - net2
 restart: unless-stopped
services:
 app1:
 <<: *app_default
 image: app1
 app2:
 <<: *app_default
 image: app3
 app3:
 <<: *app_default
 image: app3

Docker aliases

alias dcup='docker compose up -d'
alias dcdn='docker compose down'
alias dcl='docker compose logs -f'

See also

https://medium.com/@kinghuang/docker-compose-anchors-aliases-extensions-a1e4105d70bd
https://medium.com/@kinghuang/docker-compose-anchors-aliases-extensions-a1e4105d70bd
https://medium.com/@kinghuang/docker-compose-anchors-aliases-extensions-a1e4105d70bd

